dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
↳ QTRS
↳ DependencyPairsProof
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(exp2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(exp2(ALPHA, BETA)) -> DX1(BETA)
Used ordering: Polynomial Order [17,21] with Interpretation:
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
POL( DX1(x1) ) = x1
POL( exp2(x1, x2) ) = x1 + x2 + 1
POL( ln1(x1) ) = x1
POL( minus2(x1, x2) ) = x1 + x2
POL( neg1(x1) ) = x1
POL( times2(x1, x2) ) = x1 + x2
POL( div2(x1, x2) ) = x1 + x2
POL( plus2(x1, x2) ) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(ln1(ALPHA)) -> DX1(ALPHA)
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(ln1(ALPHA)) -> DX1(ALPHA)
Used ordering: Polynomial Order [17,21] with Interpretation:
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
POL( DX1(x1) ) = x1
POL( ln1(x1) ) = x1 + 1
POL( minus2(x1, x2) ) = x1 + x2
POL( neg1(x1) ) = x1
POL( times2(x1, x2) ) = x1 + x2
POL( div2(x1, x2) ) = x1 + x2
POL( plus2(x1, x2) ) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(minus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(minus2(ALPHA, BETA)) -> DX1(BETA)
Used ordering: Polynomial Order [17,21] with Interpretation:
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
POL( DX1(x1) ) = x1
POL( minus2(x1, x2) ) = x1 + x2 + 1
POL( neg1(x1) ) = x1
POL( times2(x1, x2) ) = x1 + x2
POL( div2(x1, x2) ) = x1 + x2
POL( plus2(x1, x2) ) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(neg1(ALPHA)) -> DX1(ALPHA)
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(neg1(ALPHA)) -> DX1(ALPHA)
Used ordering: Polynomial Order [17,21] with Interpretation:
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
POL( DX1(x1) ) = x1
POL( neg1(x1) ) = x1 + 1
POL( times2(x1, x2) ) = x1 + x2
POL( div2(x1, x2) ) = x1 + x2
POL( plus2(x1, x2) ) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(times2(ALPHA, BETA)) -> DX1(BETA)
DX1(times2(ALPHA, BETA)) -> DX1(ALPHA)
Used ordering: Polynomial Order [17,21] with Interpretation:
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
POL( DX1(x1) ) = x1
POL( times2(x1, x2) ) = x1 + x2 + 1
POL( div2(x1, x2) ) = x1 + x2
POL( plus2(x1, x2) ) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(div2(ALPHA, BETA)) -> DX1(BETA)
DX1(div2(ALPHA, BETA)) -> DX1(ALPHA)
Used ordering: Polynomial Order [17,21] with Interpretation:
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
POL( DX1(x1) ) = x1
POL( div2(x1, x2) ) = x1 + x2 + 1
POL( plus2(x1, x2) ) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DX1(plus2(ALPHA, BETA)) -> DX1(BETA)
DX1(plus2(ALPHA, BETA)) -> DX1(ALPHA)
POL( DX1(x1) ) = x1
POL( plus2(x1, x2) ) = x1 + x2 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
dx1(X) -> one
dx1(a) -> zero
dx1(plus2(ALPHA, BETA)) -> plus2(dx1(ALPHA), dx1(BETA))
dx1(times2(ALPHA, BETA)) -> plus2(times2(BETA, dx1(ALPHA)), times2(ALPHA, dx1(BETA)))
dx1(minus2(ALPHA, BETA)) -> minus2(dx1(ALPHA), dx1(BETA))
dx1(neg1(ALPHA)) -> neg1(dx1(ALPHA))
dx1(div2(ALPHA, BETA)) -> minus2(div2(dx1(ALPHA), BETA), times2(ALPHA, div2(dx1(BETA), exp2(BETA, two))))
dx1(ln1(ALPHA)) -> div2(dx1(ALPHA), ALPHA)
dx1(exp2(ALPHA, BETA)) -> plus2(times2(BETA, times2(exp2(ALPHA, minus2(BETA, one)), dx1(ALPHA))), times2(exp2(ALPHA, BETA), times2(ln1(ALPHA), dx1(BETA))))